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Passive immunization, passive immunity, and passive immu-
notherapy all refer to the transfer of antibodies to an unpro-
tected individual for the prevention or treatment of disease. 
The first formal demonstration of passive immunization for 
successfully treating diphtheria and tetanus dates back to 
animal studies published in Deutsche Medizinische Wochen-
schrift (German Medical Journal) in 1890.1 The technique was 
quickly adapted to clinical use and as early as the mid-1890s, 
diphtheria-specific antitoxin was used successfully in the hos-
pital setting to reduce mortality during diphtheria outbreaks.2–4 
Indeed, in 1901 Emil von Behring was awarded the first Nobel 
Prize for Physiology or Medicine for the discovery of this 
important medical intervention.5 The significance of this clini-
cal advance cannot be overstated; Behring estimated that 
45,000 lives were saved each year using diphtheria-specific 
passive immunotherapy in Germany alone.6 In the 1890s, the 
mortality rate of hospitalized cases ranged from 47% to 60%,7 
and the work of Emil von Behring and his colleague, Shibasa-
buro Kitasato, provided the only hope for diphtheria patients 
in the preantibiotic era.

According to Behring, the discovery of passive immuniza-
tion would not have occurred if it were not for his earlier work 
that focused on characterizing the protective mechanisms of 
active immunization against diphtheria5,8 and through the 
work of his collaborator, Kitasato, on the mechanisms of 
vaccine-mediated immunity against tetanus.1 When guinea 
pigs were infected with Corynebacterium diphtheriae, the animals 
routinely died of the disease. However, when Behring vacci-
nated animals and they mounted neutralizing antibodies to 
diphtheria toxin, he found that they were protected from a 
normally lethal dose of C. diphtheriae. To determine if protec-
tion was now an intrinsic property of the immune host that 
could be transferred to a susceptible host, he injected naïve 
guinea pigs with diphtheria toxin and then successfully treated 
them with immune serum from vaccinated animals. Likewise, 
injection of Clostridium tetani or purified tetanus toxin was 
typically lethal, but through a method developed by Paul 
Ehrlich,5 animals could eventually become immune to high 
doses of tetanus toxin by sequentially inoculating them with 
lower, nonlethal doses of tetanus toxin. Kitasato used this 
approach to demonstrate that the blood of vaccinated, tetanus-
immune rabbits could be transferred to naïve mice and fully 
protect them from a normally lethal dose of virulent C. tetani 
or from filtered C. tetani culture supernatant containing 
tetanus toxin.1 Behring and Kitasato may have said it best in 
the final sentence of their landmark 1890 study, “The result of 
our experiments remind us forcibly of these words: Blut ist ein 
ganz besonderer Saft [blood is a very unusual fluid].”1

Technology has advanced substantially in the more than 
125 years since Behring and Kitasato’s first formal demonstra-
tion of protective passive immunotherapy.1 In those early 
days, it was infeasible to use human immune serum to treat 
diphtheria, so the first large-scale production of polyclonal 
diphtheria-immune serum was prepared by vaccinating  
dairy cows.5 To this day, commercial antisera used to treat a 
broad range of toxins are still produced in animals (Table 8.1). 
Passive immunotherapy with animal-derived antibody prepa-
rations should only be used under close medical supervision9 
or the resulting host immune response to the foreign  
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immunoglobulins and serum proteins may trigger serum sick-
ness, urticaria, and/or anaphylaxis following administration. 
Fortunately, the advent of several innovative technologies that 
reduce the need for animal-derived antibodies have forged new 
paths in terms of safety, feasibility, and the protective efficacy 
afforded by passive immunization. Following the discovery of 
monoclonal antibody technology,10,11 further refinements have 
been made, including use of various display techniques (e.g., 
phage display, yeast display) to screen large antibody librar-
ies.12 Other technological advances include the development 
of chimeric monoclonal antibodies in which the murine anti-
body is “humanized” by genetically replacing the heavy chain 
region of the molecule with the human immunoglobulin 
counterpart and the use of transgenic mice in which the endog-
enous murine immunoglobulin genes have been replaced by 
human immunoglobulin genes.12 This latter approach has the 
advantage that hybridomas from immunized transgenic mice 
produce fully human monoclonal antibodies without requir-
ing further genetic modifications. Recently, development of 
Epstein-Barr virus (EBV)-transformed human memory B cells 
for the production of monoclonal antibodies has led to yet 
another surge in the production of new human monoclonal 
antibodies with rare antigenic specificities to uncommon 
pathogens and these can be produced directly from immune 
human subjects.12,13 Before the era of antibiotics, antibody-
based therapy was the only option available for combating 
many bacterial diseases. Even today, there are only a handful 
of antiviral drugs available and no therapeutic options exist 
for most viral diseases. However, new antibody-based thera-
pies are continuing to be developed with the potential to 
provide protection against a broad array of bacterial and viral 
pathogens. In this chapter, we describe the role of passive 
immunity in the protection of the naïve host, discuss the 
parameters involved with successful immunotherapy, and 
provide examples of protective efficacy in animal models as 
well as in human clinical studies.

MATERNAL ANTIBODIES: THE ORIGINAL 
PASSIVE IMMUNOTHERAPY
Maternal antibodies represent a natural form of passive immu-
notherapy in which the immunoglobulin (Ig) G repertoire of 
the mother’s preexisting humoral immune response is trans-
ferred to the fetus through the placenta. Acquisition of mater-
nal antibodies varies widely among mammalian species.14 
Maternal IgG is transferred in utero to the fetus of humans 
and monkeys through the placenta with no evidence of post-
natal transport, and reaches serum concentrations that are 
similar between mother and infant. In contrast, there is no 
prenatal transport of maternal IgG in mink, cows, horses, 
sheep, goats, and pigs, and although the animals are born with 
serum that is nearly devoid of IgG, these antibodies are trans-
ferred from ingested colostrum into the bloodstream within 
the first 24 to 48 hours after birth across the gastrointestinal 
tract. Transmission of maternal IgG in mice, rats, and dogs 
occurs in utero as well as across the gastrointestinal tract after 
birth, indicating that they differ from humans and non-human 
primates as well as being different from mink and the 
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TABLE 8.1	 Licensed	U.S.	Antibody	Products	for	Passive	Immunity	to	Infectious	Diseases	or	Toxins

Product Brand Name Manufacturer Licensed Indicationsa

STANDARD IMMUNOGLOBULINS (HUMAN)
Immunoglobulin,	intravenous Bivigam

Carimune
Flebogamma
Gammagard
Gammaplex
Gamunex-C
Octagam

Privigen

Biotest	Pharmaceuticals
CSL	Behring
Instituto	Grifols
Baxter
BPL
Grifols	Biotherapeutics
Pharmazeutika	
Produktionsges
CSL	Behring

Primary	humoral	immunodeficiency;	multifocal	
motor	neuropathy;	chronic	idiopathic	
thrombocytopenic	purpura;	Kawasaki	
syndrome;	chronic	inflammatory	
demyelinating	polyneuropathy

Immunoglobulin,	subcutaneous Hizentra
Hyqvia
Gammagard
Vivaglobin

CSL	Behring
Baxter
Baxter
CSL	Behring

Primary	humoral	immunodeficiency;	multifocal	
motor	neuropathy

Immunoglobulin,	intramuscular GamaSTAN Grifols	Biotherapeutics Hepatitis	A;	measles;	varicella;	rubella

HYPERIMMUNOGLOBULINS (HUMAN)
Anthrax	immunoglobulin	intravenous	

(human)
Anthrasil Cangene	Corporation Treatment	of	inhalation	anthrax

Botulism	immunoglobulin	
intravenous	(human)

BabyBIG California	Department	of	
Health	Services

Treatment	of	infant	botulism	(type	A	or	type	B	
Clostridium botulinum)

Cytomegalovirus	immunoglobulin	
intravenous	(human)

CytoGam CSL	Behring Prophylaxis	of	cytomegalovirus	(CMV)	disease	
associated	with	organ	transplantation

Hepatitis	B	immunoglobulin	
intravenous	(human)

HepaGam	B
Nabi-HB

Cangene	Corporation
Nabi	Biopharmaceuticals

Prevention	and	postexposure	prophylaxis	for	
hepatitis	B

Rabies	immunoglobulin	(human) HyperRab	S/D Grifols	Biotherapeutics Postexposure	treatment	of	rabies,	administered	
in	conjunction	with	the	rabies	vaccine

Tetanus	immunoglobulin	(human) HyperTET	S/D Grifols	Biotherapeutics Prophylactic	or	therapeutic	treatment	of	tetanus

Vaccinia	immunoglobulin	
intravenous	(human)

N/A Cangene	Corporation Treatment	and/or	modification	of	complications	
resulting	from	smallpox	vaccination

Varicella	zoster	immunoglobulin	
(human)

VariZIG Cangene	Corporation Varicella	postexposure	prophylaxis	in	high-risk	
groups

ANIMAL-DERIVED IMMUNOGLOBULIN PRODUCTS

Antivenin	(Latrodectus mactans)	
(equine)

Black	widow	
spider	
antivenin

Merck	&	Co,	Inc. Treatment	of	bites	by	the	black	widow	spider	
(Latrodectus mactans)

Botulism	antitoxin	bivalent	(equine)	
types	A	and	B

N/A Sanofi	Pasteur	Ltd Treatment	of	botulism	(types	A	or	type	B)

Botulism	antitoxin	heptavalent	(A,	B,	
C,	D,	E,	F,	G)-(equine)

BAT Cangene	Corporation Treatment	of	botulism	(types	A,	B,	C,	D,	E,	F,	
or	G)

Centruroides	(scorpion)	immune	
F(ab’)2	(equine)	injection

Anascorp Rare	Disease	
Therapeutics,	Inc.

Treatment	of	scorpion	envenomation

Crotalidae	immune	F(ab’)2	(equine) Anavip Instituto	Bioclon	S.A.	de	
C.V.

Treatment	of	rattlesnake	envenomation

Crotalidae	polyvalent	immune	Fab	
(ovine)

CroFab Protherics,	Inc. Treatment	of	rattlesnake	and	cottonmouth/
water	moccasin	envenomation

Digoxin	immune	Fab	(ovine) DigiFab Protherics,	Inc. Treatment	of	digoxin	toxicity	or	overdose

Diphtheria	antitoxin	(equine) DAT Instituto	Butantab Prophylactic	or	therapeutic	treatment	of	
diphtheria

MONOCLONAL ANTIBODIES

Palivizumab Synagis MedImmune Prevention	of	lower	respiratory	tract	disease	
caused	by	respiratory	syncytial	virus	(RSV)	in	
high-risk	children

Raxibacumab N/A Human	Genome	
Sciences/
GlaxoSmithKline

Treatment	of	inhalation	anthrax

N/A,	not	applicable.
aIndications	as	listed	by	the	manufacturer.	Indications	have	been	grouped	for	each	product	type.
bDistributed	by	the	Centers	for	Disease	Control	and	Prevention	to	physicians	as	an	Investigational	New	Drug.
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age who were born to mothers who received pertussis vaccina-
tion during pregnancy,30,31 thus lending further support to the 
current recommendations for the vaccination of pregnant 
mothers against B. pertussis.32 The age limit of younger than 2 
months was chosen as this is the age at which primary pedi-
atric vaccination is recommended and analysis beyond this 
age might be confounded by the protective effects of direct 
vaccination of the child. Nevertheless, the protection afforded 
by maternally derived IgG against respiratory infections 
involving viral (e.g., influenza) or bacterial (e.g., B. pertussis) 
pathogens together demonstrate the broad impact that mater-
nal vaccination and the subsequently increased transfer of 
maternal antibodies can have on the health of young infants.

CRITICAL PARAMETERS FOR  
PASSIVE IMMUNOTHERAPY
Before vaccines and antibiotics revolutionized modern medi-
cine, antibody-based therapies represented the only effective 
medical treatment for many life-threatening diseases includ-
ing diphtheria, scarlet fever, bacterial meningitis, and bacterial 
pneumonia.33,34 Today, most commercial forms of antibody-
based immunotherapy for infectious disease still rely on poly-
clonal antibodies of human or animal origin, with the notable 
exceptions of the monoclonal antibodies, palivizumab and 
raxibacumab (see Table 8.1). The main advantage of using 
polyclonal antibodies for passive immunotherapy is that this 
approach will include antibodies to multiple epitope specifici-
ties that may work in an additive or synergistic manner with 
the potential contribution of multiple immunoglobulin iso-
types and subclasses that have different biological functions 
(Table 8.2).35 On the other hand, there are several potential 
challenges to using polyclonal antibodies for immunotherapy 
including low antigen-specific activity, supply limitations 
(especially for rare diseases), variability between manufactur-
ing lots, and safety as well as quality control issues that are 
often associated with the use of human blood products. In 

ungulates. These differences also indicate that care should be 
taken when choosing an appropriate animal model for study-
ing the role of maternal antibodies against infectious disease 
as the mechanisms may be more species-specific than typically 
realized.

In a comprehensive study involving the analysis of anti-
bodies to 16 viruses using samples from 58,500 patients, the 
relationship between maternal immunity and infant immu-
nity is clear (Fig. 8.1).15 The prevalence of antibodies to each 
viral antigen among infants less than 1 month old is remark-
ably similar to those observed in the 20- to 40-year old adults 
who represented the main age group of the mothers. For 
instance, immunity to common childhood diseases such as 
measles and mumps was comparable between newborns and 
their mothers. Immunity to less-common viral pathogens, 
such as influenza B, was relatively low among infants and 
adults in the cohorts examined in 1971–1972, but higher 
among those sampled in 1973–1974,1975–1976, and 1977–
1978, coinciding with an influenza B epidemic that had 
occurred in 1974.15 This shows that the prevalence of maternal 
antibodies is dynamic and that recent outbreaks involving a 
specific pathogen will result in a higher frequency of pathogen-
immune mothers and a concomitant increase in the number 
of infants who are likewise bestowed at least transient immu-
nity to that particular microbe. As expected, maternal antibod-
ies wane rapidly during the first 6 months of life and then 
exposure to pathogens over the following months and years 
results in an accumulation of different antibody specificities 
as children reach adulthood (see Fig. 8.1). The overall protec-
tive efficacy of maternal antibodies is perhaps most pro-
nounced among children with genetic immunodeficiencies 
such as severe combined immunodeficiency (SCID), resulting 
in the lack of functional T and B cells or agammaglobulin-
emia, in which patients lack functional B cells while still 
having the ability to mount pathogen-specific T-cell responses. 
The clinical presentation of SCID is not apparent at birth but 
relatively uniform diagnosis occurs at a mean of 6.59 months 
of age,16 which is also about the age that maternal antibodies 
have reached their lowest levels15 (see Fig. 8.1). Likewise, 
agammaglobulinemic patients also begin to present with 
symptoms of immunodeficiency around this same age.17 
Maternal antibodies represent an immunological “double-
edged sword” in the sense that they are known to interfere 
with live attenuated virus vaccines such as the MMR (measles, 
mumps, rubella)18–20 and rotavirus vaccines,21,22 whereas direct 
immunization of mothers in the third trimester of pregnancy 
can significantly increase protection of infants against common 
respiratory viruses such as influenza.23–25 Indeed, maternal vac-
cination may result in a 45% to 91% reduction in influenza-
related hospitalizations among infants younger than 6 months 
of age.23–25 Likewise, the importance of maternal vaccination 
against Bordetella pertussis (i.e., whooping cough) was recog-
nized as early as the 1930s to 1940s with studies showing 
higher antibacterial antibody responses and potential protec-
tion from exposure to whooping cough among infants born 
to vaccinated mothers.26–29 Recent studies verify these earlier 
results, demonstrating a 90% to 91% vaccine efficacy against 
whooping cough among infants younger than 2 months of 

TABLE 8.2	 Comparison	of	Polyclonal	and	Monoclonal	
Antibody	Therapy

Polyclonal 
Antibodies

Monoclonal 
Antibodies

Advantages Polyvalent	specificity
Multiple	isotypes	with	

different	effector	
functions

High	specific	activity
Standardized	potency
Unlimited	availability
Minimal	biohazard	

potential

Disadvantages Low	specific	activity
Broad	variation	in	

potency
Limited	availability
Biohazard	risk	of	

human	blood	
products

Monovalent	specificity
Single	isotype
Potential	to	select	for	

escape	mutants

Figure 8.1.  Age-specific prevalence of antibodies to mumps, measles, influenza A, and influenza B viruses in patients screened with 
16 viral antigens during the years 1971–1978.	The	prevalence	curves	represent	four	2-year	periods:	1971–1972	(green	line),	1973–1974	(aqua	
line),	1975–1976	(red	line),	and	1977–1978	(blue	line).	CF,	complement	fixing.	(From Ukkonen P, Hovi T, von Bonsdorff C-H, Saikku P, Penttinen 
K. Age-specific prevalence of complement-fixing antibodies to sixteen viral antigens: A computer analysis of 58,500 patients covering a period 
of eight years. J	Med	Virol. 1984;13:131–148.)
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nonlymphoid tissues and to penetrate mucosal sites of infec-
tion is likely to explain why it is often considered the best 
immunoglobulin isotype for routine passive immunization 
and has shown clinical benefit ranging from reduced clinical 
symptoms to nearly complete protection from lethal infection 
in a number of infectious disease models (Table 8.3).

Over the last century, it has been well established that high 
specific antibody titers and early timing of antibody transfer 
in relation to disease onset are the two most important param-
eters involved with determining the protective efficacy of 
passive immunization (Fig. 8.2). In one account of the early 
days of clinical diphtheria-specific immunotherapy developed 
by Behring and Ehrlich,5 initial failures in patients after treat-
ment with weak or unstandardized diphtheria-immune serum 
brought Ehrlich to describe three points that he believed were 
important for successful immunotherapy: (a) treatment has to 
be initiated at the onset of disease; (b) the more the disease 
has progressed, the higher the serum quantities necessary for 
cure; and (c) depending on the severity of the case, certain 
minimal doses can be specified. Later studies confirmed these 
results: if diphtheria immunotherapy was initiated on the first 
day of disease, there was 0% mortality (n = 183).49 However, 
if therapy was delayed to 2, 3, or 4 days after disease onset, 
then the accompanying diphtheria case-fatality rate subse-
quently increased to 1.6% (n = 905), 4.4% (n = 632), and 
6.9% (n = 436), respectively.49 These results are similar to 
those observed during antibiotic-based therapy of bacterial 
sepsis. In an ideal setting, it is recommended that antibiotics 
be administered within 1 hour of diagnosis of severe sepsis or 
septic shock as these drugs provide clinical benefit only if 
administered early in the course of disease and are generally 
ineffective during late-stage disease.50

The importance of high-dose immunotherapy given at the 
earliest sign of disease is not unique to bacterial anti-toxin 
therapy. The same rules apply to preventing or treating viral 
infections as well. During a measles epidemic in 1931–1932, 
72% of exposed individuals (n = 32) who received no passive 
immunization contracted measles. If convalescent serum was 
administered within 10 days of exposure, then the attack rate 
was reduced to 16% (n = 219) whereas if therapy was not initi-
ated until 12 to 16 days postexposure, approximately 80% of 

contrast, monoclonal antibodies are, by definition, limited to 
a single epitope specificity but they have several advantages 
over polyclonal antibodies since they can be manufactured in 
vitro at large scale, with inherently high specificity and lot 
consistency (Table 8.2). For example, the combination of 
0.7 mg of two tetanus-specific human monoclonal antibodies 
has the same neutralizing capacity observed with administra-
tion of 100 to 170 mg of polyclonal tetanus immunoglobu-
lin.36 Likewise, administration of 0.023 mg of a vaccinia 
virus-specific monoclonal antibody provides the same level of 
protection afforded by 5 mgs of vaccinia immunoglobulin 
(VIG).37 Although neutralization escape mutants are a valid 
concern when using monoclonal antibody therapy,38,39 this 
has not yet been a major problem during clinical use of palivi-
zumab for respiratory syncytial virus (RSV). Initially, sequenc-
ing of 371 RSV isolates demonstrated that there were no 
mutations in the neutralizing epitope of the F protein.40 Sub-
sequent studies identified RSV escape mutants in approxi-
mately 5% of 146 breakthrough cases, indicating that selective 
pressure for escape mutations is still relatively uncommon 
under current conditions of use.41 This suggests that monoclo-
nal antibodies can remain effective when used clinically in the 
long-term, as long as they are specific for a stable epitope for 
that particular pathogen.

The functional characteristics of the immunoglobulins 
used for passive immunization is an important consideration 
in determining protective efficacy in vivo.35 For example, 
serum IgG molecules equilibrate into extravascular space 
whereas IgM is largely confined to intravascular space.14 IgM 
molecules also have a short half-life (5 days14) and are typi-
cally of low affinity, which is why IgM is not an optimal choice 
for passive immunotherapy. Serum IgA is monomeric and, 
although it also equilibrates into extravascular space,14 it has 
only a 6-day half-life14 and does not appear to contribute 
significantly to functional IgA in the lungs of mice.42,43 Human 
IgG on the other hand, has an average half-life of approxi-
mately 21 days (except IgG3, which has a 7-day half-life),14,44 
is typically of high affinity, and transudation across mucosal 
barriers can protect against pathogens that invade through 
mucosal routes. Interestingly, serum IgG (and serum IgA) 
responses elicited in response to vaccination against Neisseria 
meningitidis correlate strongly with the levels of antibacterial 
antibodies present in the saliva at 1 month and 1 year after 
vaccination,45 indicating that circulating serum antibodies 
may be an important contributor to the antibodies released in 
mucosal secretions. Indeed, after intravenous administration 
of an HIV-specific monoclonal antibody into rhesus macaques, 
serum antibody titers of 690 to 725 µg/mL resulted in mucosal 
antibody titers of 17 to 30 µg/mL in vaginal fluids and provide 
complete protection against intravaginal challenge with SHIV 
(chimeric simian immunodeficiency virus expressing HIV 
envelope).46 Influenza virus is another mucosal pathogen with 
strict tropism to the respiratory tract, but influenza-specific 
serum antibody titers correlate with protection in humans.47 
In mice, the relative roles of influenza-specific polymeric IgA 
and IgG were compared in terms of antiviral protection in the 
upper respiratory tract versus the lung after influenza chal-
lenge.42 When polymeric IgA was transferred 4 hours prior to 
influenza infection, this prevented pathology in the upper 
respiratory tract but was not effective in the lung, whereas 
transfer of IgG prevented pathology in the lung, but required 
higher doses to protect against infection of the upper respira-
tory tract. The authors concluded that different antibody iso-
types may function preferentially at different anatomical sites 
in vivo. These results are in contrast to experimental influenza 
infection in humans in which inactivated influenza vaccine-
derived IgG is believed to be a major contributor to protection 
of the nasal compartment.48 Overall, the ability of IgG to enter 

Figure 8.2.  Efficacy of passive immunity decreases with disease 
progression.	 Full	 protection	 from	 symptomatic	 disease	 is	 best	
achieved	through	prophylactic	administration	of	antibody	therapy	prior	
to	exposure	or	infection.	However,	antibody	therapy	may	also	be	highly	
effective	 at	 early	 points	 postexposure,	 prior	 to	 the	 onset	 of	 disease	
symptoms.	Passive	immunity	is	generally	less	effective	when	adminis-
tered	after	the	onset	of	symptomatic	disease,	and	typically	shows	little	
to	no	clinical	benefit	once	severe	late-stage	disease	has	occurred.	
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TABLE 8.3	 Efficacy	of	Passive	Immunity	for	Infectious	Diseasesa

Animal Models Clinical Studies

TOXINS

Anthrax	toxin Prophylaxis145,146

Treatment145,146
Prophylaxis:	not	available
Treatment147,148

Botulinum	toxin Prophylaxis149–151

Treatment151
Prophylaxis:	not	available
Treatment152–155

Diphtheria	toxin Prophylaxis156,157

Treatment157,158
Prophylaxis159

Treatment7,49,160,161

Ricin	toxin Prophylaxis162,163

Treatment163
Prophylaxis:	not	available
Treatment:	not	available

Tetanus	toxin Prophylaxis1,164

Treatment157,164,165
Prophylaxis166

Treatment166,167:	not	supported168

BACTERIAL INFECTIONS

Bordetella pertussis	(whooping	
cough)

Prophylaxis169,170

Treatment170,171
Prophylaxis30b,31b,172,173

Treatment173,174

Borrelia	spp.	(Lyme	disease) Prophylaxis175,176

Treatment175
Prophylaxis:	not	available
Treatment:	not	available

Chlamydia trachomatis Prophylaxis177–179

Treatment:	not	available
Prophylaxis:	not	available
Treatment:	not	available

Clostridium difficile Prophylaxis180,181

Treatment180,181
Prophylaxis:	not	available
Treatment182

Escherichia coli Prophylaxis183–185

Treatment184,185
Prophylaxis110–113:	not	supported186

Treatment:	not	supported187

Francisella tularensis	(Tularemia) Prophylaxis119,120

Treatment121
Prophylaxis:	not	available
Treatment118,188

Haemophilus influenzae Prophylaxis189–191

Treatment191,192
Prophylaxis102

Treatment99,101

Mycobacterium tuberculosis	
(Tuberculosis)

Prophylaxis124,193

Treatment124,194,195
Prophylaxis:	not	available
Treatment128:	not	supported128

Neisseria meningitidis	(Meningococcal	
disease)

Prophylaxis196–199

Treatment198–200
Prophylaxis:	not	available
Treatment33,201

Pseudomonas aeruginosa Prophylaxis202,203

Treatment202–204
Prophylaxis:	not	available
Treatment205,206:	not	supported207

Salmonella typhi	(Typhoid	fever) Prophylaxis208,209

Treatment210
Prophylaxis:	not	available
Treatment211

Shigella	spp. Prophylaxis212b,213b,214

Treatment:	not	available
Prophylaxis215

Treatment:	not	supported216

Staphylococcus aureus Prophylaxis217–219

Treatment:	not	supported218
Prophylaxis:	not	supported220–222

Treatment:	not	supported223,224

Streptococcus agalactiae	
(Streptococcus	group	B)

Prophylaxis225–228

Treatment225,226
Prophylaxis229b,230b

Treatment:	not	available

Streptococcus pneumoniae	
(Pneumococcal	disease)

Prophylaxis231–233

Treatment234–236
Prophylaxis237

Treatment33,236,238

Streptococcus pyogenes	
(Streptococcus	group	A)

Prophylaxis239–241

Treatment:	not	available
Prophylaxis242,243

Treatment243–248

Vibrio cholerae	(Cholera) Prophylaxis249–251,251b

Treatment250
Prophylaxis:	not	available
Treatment252,253

Yersinia pestis	(Plague) Prophylaxis254–260

Treatment254–257,261–263
Prophylaxis264

Treatment257,265

VIRAL INFECTIONS

Chikungunya	virus Prophylaxis266,267

Treatment266,267
Prophylaxis:	not	available
Treatment:	anecdotal268c

Coxsackievirus Prophylaxis269

Treatment270
Prophylaxis:	not	available
Treatment271

Cytomegalovirus Prophylaxis272b,273,274

Treatment:	not	available
Prophylaxis275–277

Treatment:	not	available

Continued on following page
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Animal Models Clinical Studies

Dengue	virus Prophylaxis278–280

Treatment278,280
Prophylaxis:	not	available
Treatment:	not	available

Ebola	virus	(Ebola	hemorrhagic	fever) Prophylaxis281

Treatment281–283
Prophylaxis:	not	available
Treatment:	anecdotal284

Epstein-Barr	virus Prophylaxis285,286

Treatment:	not	available
Prophylaxis133

Treatment:	not	available

Hantavirus	(Andes	virus	and	Sin	
Nombre	virus)

Prophylaxis287

Treatment287,288
Prophylaxis:	not	available
Treatment289

Hepatitis	A	virus Prophylaxis:	not	available
Treatment:	not	available

Prophylaxis290–293

Treatment:	not	available

Hepatitis	B	virus Prophylaxis294

Treatment294
Prophylaxis295

Treatment296,297

Hepatitis	C	virus Prophylaxis298

Treatment298
Prophylaxis299

Treatment300,301:	not	supported301,302

Hepatitis	E	virus Prophylaxis303

Treatment:	not	available
Prophylaxis304

Treatment:	not	available

Herpes	simplex	virus Prophylaxis92,305,306

Treatment92,307
Prophylaxis308

Treatment309

HIV Prophylaxis310,311

Treatment312,313
Prophylaxis:	not	available
Treatment140,314,315:	not	supported316,317

Human	papillomavirus Prophylaxis318,319

Treatment:	not	available
Prophylaxis:	not	available
Treatment:	not	available

Influenza	virus Prophylaxis92,95,96

Treatment92,95,96
Prophylaxis23–25b

Treatment97,98,320

Japanese	encephalitis	virus Prophylaxis321,322

Treatment321,322
Prophylaxis:	not	available
Treatment:	not	available

Junin	virus	(Argentine	hemorrhagic	
fever)

Prophylaxis70

Treatment70–72
Prophylaxis:	not	available
Treatment68,69

Lassa	virus	(Lassa	hemorrhagic	fever) Prophylaxis:	not	available
Treatment76,77

Prophylaxis:	not	available
Treatment78,79

Machupo	virus	(Bolivian	hemorrhagic	
fever)

Prophylaxis323

Treatment323
Prophylaxis:	not	available
Treatment:	not	available

Measles	virus Prophylaxis324,325

Treatment:	not	available
Prophylaxis51,53,80–84

Treatment:	not	available

Molluscum	contagiosum Prophylaxis:	not	available
Treatment:	not	available

Prophylaxis:	anecdotal308

Treatment:	not	available

Monkeypox	virus Prophylaxis326

Treatment:	not	available
Prophylaxis:	not	available
Treatment:	not	available

Mumps	virus Prophylaxis:	not	availabled

Treatment:	not	available
Prophylaxis327–330

Treatment328

Parvovirus	B19 Prophylaxis:	not	available
Treatment:	not	available

Prophylaxis:	not	available
Treatment:	anecdotal331,332

Poliovirus Prophylaxis333,334

Treatment335
Prophylaxis336,337

Treatment54,338–340

Rabies	virus Prophylaxis341

Treatment342–345
Prophylaxis346

Treatment:	not	supported347

Respiratory	syncytial	virus Prophylaxis348,349

Treatment350,351
Prophylaxis55–58,60,352

Treatment:	not	supported59,61,62

Rift	Valley	fever	virus Prophylaxis353,354

Treatment:	not	available
Prophylaxis:	not	available
Treatment:	not	available

Rotavirus Prophylaxis104,105,355–358

Treatment104,358
Prophylaxis21b,103,104

Treatment104–108

Rubella	virus Prophylaxis:	not	available
Treatment:	not	available

Prophylaxis359–362

Treatment363

TABLE 8.3	 Efficacy	of	Passive	Immunity	for	Infectious	Diseasesa	(Continued)
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to 16 IU/mL, the postexposure incidence of measles increased 
from 17% to 57% despite either lot being administered within 
5 days of exposure.53 Likewise, the timing of passive immuno-
therapy is also important for enteric (e.g., polio) and respira-
tory pathogens (e.g., RSV). An outbreak in 1934 involving 
2992 polio patients showed that if convalescent serum was 
administered within 0 to 2 days of meningitis, then paralysis 
was reported in 5.4% of patients (n = 2367). If treatment was 
delayed until 3 to 6 days after meningeal disease onset, 15.5% 
reported paralysis (n = 536), and if treatment was delayed for 
more than 6 days, then paralysis was noted in 30.3% of polio 
patients (n = 89).54 For RSV, polyclonal RSV-immunoglobulin 
reduced the incidence of RSV-associated hospitalization by 

contacts subsequently contracted measles (n = 5).51 In a 
study published in 1945 involving 1024 cases of measles  
exposure, 36% of the individuals who received immunother-
apy within 0 to 2 days of exposure contracted measles com-
pared to 48% for those whose treatment was delayed to 6 to 
8 days postexposure.52 The dose used in these studies was also 
critical: 67% of patients who received 0.01 mL/kg of gamma-
globulin contracted measles whereas only 16% of patients 
who received 0.06 mL/kg of gammaglobulin contracted the 
disease. The titer of virus-specific antibodies will often differ 
between lots of polyclonal immunoglobulin preparations (see 
Table 8.2). In another study, when the measles-specific titer of 
gammaglobulin from different lots decreased from 33 IU/mL 

Animal Models Clinical Studies

Severe	acute	respiratory	syndrome	
coronavirus

Prophylaxis364,365

Treatment366
Prophylaxis:	not	available
Treatment320

Simian	immunodeficiency	virus Prophylaxis367

Treatment368,369:	not	supported367
Not	applicable

Simian/human	immunodeficiency	virus Prophylaxis46,370–376

Treatment141,374
Not	applicable

Tickborne	encephalitis	virus Prophylaxis377,378

Treatment377
Prophylaxis379

Treatment:	anecdotal380

Vaccinia	virus Prophylaxis37,381–383

Treatment37,383,384
Prophylaxis385

Treatment386,387

Varicella	virus Prophylaxis:	not	available
Treatment:	not	available

Prophylaxis388–390

Treatment:	not	available

Variola	(smallpox) Prophylaxis:	not	available
Treatment:	not	available

Prophylaxis64,65

Treatment65,66

Venezuelan	equine	encephalomyelitis	
virus

Prophylaxis391

Treatment391
Prophylaxis:	not	available
Treatment:	not	available

West	Nile	virus Prophylaxis392–394

Treatment392,394,395
Prophylaxis:	not	available
Treatment:	anecdotal396,397

Yellow	fever	virus Prophylaxis398–400

Treatment398,401
Prophylaxis:	anecdotal401

Treatment:	anecdotal402,403

PARASITES AND FUNGAL INFECTIONS

Candida albicans Prophylaxis404–407

Treatment406
Prophylaxis308

Treatment:	not	available

Cryptococcus neoformans Prophylaxis408–410

Treatment:	not	available
Prophylaxis:	not	available
Treatment:	not	supported411

Cryptosporidium parvum Prophylaxis412

Treatment413:	not	supported412
Prophylaxis:	not	supported414

Treatment:	not	available

Plasmodium	spp.	(Malaria) Prophylaxis415–417

Treatment:	not	available
Prophylaxis:	not	available
Treatment418,419

Toxoplasma gondii	(Toxoplasmosis) Prophylaxis420–422

Treatment:	not	available
Prophylaxis:	not	available
Treatment:	not	available

GENERAL

Genetic	immunodeficiency	diseases Not	applicable Prophylaxis423–427

HIV-associated	diseases Not	applicable Prophylaxis308,428

Sepsis/septic	shock Not	applicable Treatment246,426,429–432

aFor	animal	studies,	prophylaxis	is	defined	as	antibody	administration	prior	to	experimental	infection	and	treatment	is	defined	as	antibody	
administration	after	infection.	For	clinical	studies,	prophylaxis	is	defined	as	antibody	administration	prior	to	disease	onset	and	treatment	is	defined	
as	antibody	administration	after	disease	onset.

bEvidence	provided	through	maternal	immunization	studies.
cAnecdotal	results	are	defined	as	small	studies	that	indicate	passive	immunization	may	provide	clinical	benefit	but	are	too	limited	in	scope	to	be	

conclusive.
dNot	available,	although	two	studies433,434	demonstrated	prophylaxis	by	direct	mixing	of	mumps	virus	and	antibody	prior	to	inoculation.

TABLE 8.3	 Efficacy	of	Passive	Immunity	for	Infectious	Diseasesa	(Continued)
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confirmed Lassa fever who received immune serum within 10 
days of hospitalization survived (4 of 4; 100%). However, if 
treatment was not initiated until more than 10 days after hos-
pitalization, then only 1 of 4 (25%) patients survived, similar 
to the untreated group in which only 1 of 5 (20%) patients 
with virologically confirmed Lassa fever survived.

PASSIVE IMMUNITY AGAINST RESPIRATORY 
AND ENTERIC PATHOGENS
Although passive immunity against toxins and systemic infec-
tions such as measles51,53,80–84 and smallpox64–66 is well estab-
lished, the impact of this approach for the prevention or 
amelioration of disease caused by respiratory and enteric 
pathogens may not be as well recognized. However, several 
studies support the role of passive immunity against mucosal 
pathogens (see Table 8.3), including examples such as influ-
enza (respiratory virus), Haemophilus influenzae (respiratory 
bacterium), rotavirus (enteric virus), and Escherichia coli 
(enteric bacterium). Influenza is a significant cause of morbid-
ity and mortality throughout the world, including both sea-
sonal transmission and pandemic outbreaks.85–88 The clinical 
correlation between homotypic influenza immunity and 
vaccine-associated protection was recognized early in the 
development of the influenza vaccine.89–91 Early animal studies 
confirmed this result, with passive transfer of antibodies (both 
systemic and mucosal delivery) able to protect naïve animals 
against subsequent challenge, or provide therapeutic benefit 
when administered postexposure.92–94 More recent animal 
studies with defined monoclonal antibodies continue to 
support and extend these earlier results.95,96 Passive immuniza-
tion against influenza in humans has also been successful. In 
a comprehensive retrospective metaanalysis of eight passive 
immunization studies performed during the Spanish Influ-
enza outbreak (1918–1925), a significant 21% decrease in 
mortality (95% confidence interval [CI], 15–27%; P < .001) 
was observed.97 Subset analysis of studies that recorded early 
(treatment initiated within 4 days of pneumonia complica-
tions) versus late intervention (>4 days) showed a significant 
advantage for early treatment, with mortality decreasing from 
59% (49 of 83) to 19% (28 of 148) with earlier intervention, 
consistent with general considerations for effective passive 
immunity against infectious diseases (see Fig. 8.2). In a recent 
double-blinded, randomized controlled study during the 
2009 influenza pandemic, the use of hyperimmune intrave-
nous immunoglobulin (IVIG) (from recovered convalescent 
donors) was compared to normal IVIG in the treatment of 
severe infection in 34 subjects.98 The hyperimmune treated 
group (n = 17) demonstrated more rapid viral clearance than 
the control group (n = 17), with a greater than 90% drop in 
viral loads by day 5 posttreatment. In those patients receiving 
immunoglobulin within 5 days of symptom onset (n = 22), 
all 12 who received hyperimmune IVIG survived (12 of 12), 
whereas only 60% of patients receiving normal IVIG survived 
(6/10, P = .02).

H. influenzae type b (Hib) is an extracellular gram-negative 
bacterium that initially infects the host via the respiratory tract 
and represents another important human pathogen that can 
be controlled through passive immunization. Several early 
reports described the use of concentrated rabbit immune 
serum as a successful adjunct therapy to sulfonamide treat-
ment for patients suffering from Hib meningitis.99–101 Indeed, 
a full course of serum therapy (in addition to antibiotics) was 
able to reduce mortality to 14% (3 of 19) when compared to 
78% mortality rate (7 of 9) in those patients only receiving sul-
fonamides.101 A more recent study established the prophylactic 

41% among children with a history of prematurity or bron-
chopulmonary dysplasia.55 Prophylactic administration of a 
neutralizing monoclonal antibody, palivizumab, was shown 
to significantly improve clinical outcome by reducing RSV-
associated hospitalizations of children with congenital heart 
disease by 45%.56 Among premature infants or those with 
bronchopulmonary dysplasia, RSV-associated hospitalizations 
were reduced by 55%.57 A third palivizumab study confirmed 
these results by showing a 70% reduction in hospitalizations 
among premature infants and infants with chronic lung 
disease.58 Another monoclonal antibody, motavizumab,59 
demonstrated a further 26% relative reduction in RSV hospi-
talizations compared with patients receiving palivizumab-
based prophylaxis.60 In contrast, once RSV infection has been 
established, the use of palivizumab,61 motavizumab,59 or RSV-
immunoglobulin62 shows no clinical benefit, although RSV-
immunoglobulin may provide limited protection in the most 
severe cases.62

Passive immunotherapy can be highly successful for 
severe, even life-threatening human diseases such as small-
pox, or hemorrhagic fever caused by arenaviruses including 
Junin or Lassa fever virus (see Table 8.3). Successful interven-
tion, however, typically requires initiating treatment before 
or very shortly after symptom onset. When convalescent 
serum from smallpox survivors was administered to smallpox 
patients during the late stages of confluent or hemorrhagic 
smallpox, there was no clinical benefit observed in compari-
son to untreated controls (80% vs. 72% mortality, respec-
tively).63 When vaccinia-immune gammaglobulin (VIG) was 
administered to smallpox contacts prior to disease onset  
in addition to postexposure vaccination (i.e., standard of 
care), the number of smallpox cases was reduced by 70% 
compared to contacts who received postexposure smallpox 
vaccination alone.64 Likewise, administration of vaccinia-
immune serum of animal origin along with postexposure 
vaccination resulted in 0 of 13 cases (0%) of smallpox among 
close contacts compared to 13 of 29 cases (45%) among con-
trols who received smallpox vaccination alone.65 During a 
smallpox outbreak in 1941, 3 of 10 patients (30%) died 
while undergoing standard clinical care.66 To determine if 
addition of passive immunotherapy would reduce mortality 
after smallpox diagnosis, 250 cases of smallpox were treated 
with convalescent serum or blood, with no smallpox-
associated deaths reported (0 of 250). Approximately 75 
patients were described as having severe or hemorrhagic 
smallpox at the time of treatment and yet all survived. This 
appears to be the result of using convalescent serum obtained 
at the peak of the humoral immune response shortly after 
recovery from smallpox and the use of an optimized dosing 
schedule with higher doses administered to patients with the 
more severe disease manifestations.66

Argentine hemorrhagic fever is caused by infection with the 
Junin virus and untreated cases result in 15% to 40% 
mortality.67–69 Convalescent serum is protective in animal 
models of Junin infection70–72 and when administered within 
8 days of symptom onset, the mortality rate among human 
cases drops to 1% to 3%.68,69 Likewise, in 35% to 50% of 
hospitalized cases, Lassa fever virus causes severe disease 
including diffuse capillary leakage and hemorrhagic diathe-
sis.73 Prophylactic administration of immune serum protects 
guinea pigs74,75 and nonhuman primates76,77 from subsequent 
lethal challenge, indicating that antibodies play a clear role in 
protection against this virulent viral pathogen. In one small 
clinical study, if passive immunotherapy was administered 
within 0 to 5 days after admission to the hospital, 4 of 4 
(100%) patients survived whereas if immunotherapy was initi-
ated 7 to 9 days after hospitalization, 0 of 3 (0%) patients 
survived.78 In another study,79 patients with virologically 
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PASSIVE IMMUNIZATION: A PARADIGM  
SHIFT IN PROGRESS?
With any new scientific advance, there is controversy. In 1890, 
when Behring demonstrated that immune serum therapy 
could protect against diphtheria, it went against the current 
dogma at that time in which the cellular theory of phagocy-
tosis was believed to be the primary mechanism of host pro-
tection.5 There were also skeptics who, as early as 1896, 
discussed why antibody immunotherapy would not work.114 
However, the science not only prevailed but today a number 
of passive immunotherapy products are in clinical use (see 
Table 8.1) and an ever-increasing number of human diseases 
benefit from the use of this technology (see Table 8.3). Some 
believe that antibody plays a more important role in protec-
tion against cytopathic viruses and extracellular bacteria, but 
that T cells must be required for protection against infection 
by noncytopathic viruses and other intracellular pathogens.115 
Although this is partially refuted by the protective efficacy of 
maternal antibodies and IVIG therapy in SCID patients who 
do not have functioning T cells, it is important to bear in mind 
that antibody-mediated protection by passive immunotherapy 
in immunocompetent individuals does not function in isola-
tion, but instead works best in conjunction with other immune 
defenses, including host T cells, B cells, natural killer (NK) 
cells, etc. Although the role of antibody-mediated protection 
against intracellular bacteria and chronic viral infections was 
thought to be relatively minor, there are examples in each of 
these instances in which passive immunity provides substan-
tial clinical benefit.

As noted previously, prior to the advent of antibiotics, 
passive immunotherapy was the only option for clinical treat-
ment of most bacterial infections including Francisella tularen-
sis, a facultative intracellular bacterium that causes tularemia, 
a severe disease associated with up to 30% mortality in 
untreated cases.116,117 When streptomycin became available, a 
comparative study in 1946 was performed with 542 tularemia 
patients who received only symptomatic treatment, 832 who 
received immune equine serum, 60 who received hyperim-
mune equine serum, and 9 who received streptomycin.118 The 
untreated tularemia cases required an average of 3.78 months 
to recover and only three modes of therapy showed substantial 
improvement—treatment with immune serum within 9 days 
of disease onset (2.41 months until recovery), treatment with 
hyperimmune serum (2.15 months until recovery), and treat-
ment with streptomycin (2.40 months until recovery). Two 
clinical cases were extensively described, with the following 
summary: “The clinical responses to each agent [i.e., immune 
serum, and streptomycin] were similar, prompt amelioration 
of the symptoms of intoxication–headache, mental dullness or 
lethargy, sense of prostration and severe malaise; reduction of 
fever and of the sizes of the buboes, acceleration in the healing 
of ulcers and in the resolution of pulmonary exudates.” In 
other words, passive immunotherapy appeared in many ways 
to mimic antibiotic therapy in terms of protective efficacy. 
However, it was noted that treatment with equine serum caused 
serum sickness in 51% of the patients and had a more variable 
outcome than the antibiotic approach, leading to the recom-
mendation that streptomycin would be the agent of choice for 
future treatment of this disease.118 With the recent development 
of polyclonal and monoclonal antibodies that show protective 
efficacy against tularemia in animal models,119–121 it may be 
possible to incorporate both passive immunotherapy and anti-
biotic treatment into clinical practice not only for tularemia, 
but for other bacterial diseases, especially in cases in which 
antibiotic resistance is becoming more widespread.122,123

Mycobacterium tuberculosis is another intracellular bacte-
rium that, despite the availability of antibiotics, remains one 

use of human immunoglobulin in at-risk populations.102 San-
tosham and colleagues administered hyperimmunoglobulin 
(n = 353), or saline placebo (n = 350) to infants at 2, 6, and 
10 months of age and examined the rates of invasive Hib. For 
the first 90 days following the passive immunization protocol, 
none of the treated infants experienced invasive Hib (0% inci-
dence), compared to 7 of 350 placebo-treated children (2.0% 
incidence, P = .007).102

Rotavirus represents an enteric viral pathogen wherein pro-
tective passive immunotherapy has been demonstrated.103–108 
In one example of postexposure treatment in infants, oral 
administration of hyperimmune antibody (in addition to 
standard supportive care) was able to efficiently reduce rota-
virus shedding compared to placebo controls; treated patients 
(n = 26) exhibited no evidence of viral shedding by day 8 
posttreatment as compared to 25% of controls (n = 26).105 In 
a separate study, prophylactic passive immunity using orally 
administered bovine colostrum from immunized animals was 
tested in a blinded and randomized trial among infant chil-
dren (3–15 months old) admitted to a hospital, typically for 
respiratory conditions.103 Following admission, infants were 
given a 10-day course of the bovine colostrum or placebo. 
Infants who received placebo contracted symptomatic rotavi-
rus at a rate of 14% (9 of 65) whereas no symptomatic rota-
virus disease was observed in the colostrum-treated infants 
(0 of 55; P < .001). Analysis of rotavirus vaccine failures also 
indicates that maternally derived antibodies play a role in 
passive immunity to rotavirus infection. In a study involving 
177 vaccinated infants, a strong inverse correlation was 
observed between maternally derived rotavirus antibodies and 
the ability of infants to seroconvert following vaccination with 
a live rotavirus vaccine.21 This is an important demonstration 
not only of passive immunity to an enteric pathogen, but also 
has broader implications on the timing of vaccine administra-
tion, especially in developing countries where preexisting 
immunity is relatively high, and rotavirus vaccine immunoge-
nicity appears impaired.109

E. coli is a significant enteric pathogen wherein prophylaxis 
through passive immunity has been demonstrated in several 
clinical studies.110–113 Tacket and colleagues were able to pas-
sively protect human subjects against experimentally induced 
E. coli diarrhea with specific bovine antibody.110 Using heat-
inactivated or glutaraldehyde-inactivated E. coli for vaccina-
tion, pregnant cows were hyperimmunized with a large 
number of enterotoxigenic O serogroups. Milk collected 
during the first 10 days of lactation was purified, concentrated, 
lyophilized, and formulated for oral administration. As a 
control, a similar preparation was made using rotavirus as the 
immunizing antigen. Subjects received daily treatment (3 
times daily) for 7 days, with E. coli challenge administered 3 
days into the treatment regimen. Of the 10 subjects who 
received the E. coli antibody prophylaxis, all remained disease-
free following challenge, compared with clinical diarrhea in 9 
of 10 placebo subjects (P < .0001). Using a closely related 
clinical protocol, Otto and colleagues also demonstrated good 
efficacy with hyperimmune bovine colostrum tablets.111 In the 
first study conducted in this trial, 11 of 15 (73%) of placebo 
subjects contracted diarrhea following challenge, but this was 
reduced to only 1 of 15 (7%) in treated subjects (P = .0005). 
In a second study investigating the impact of omitting buffer 
to the oral prophylaxis, the authors also examined dose 
sparing. In these studies, the standard dose still conferred 
significant protection with 3 of 15 (20%) treated subjects 
contracting diarrhea, compared with 12 of 14 (86%) of con-
trols. Interestingly, if the dose was reduced by one-half then 
disease incidence increased to 5 of 14 subjects (36%), indicat-
ing a key role played by treatment dose in achieving successful 
passive immunotherapy.
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developed at similar rates among all three groups (P = .97). 
However, because administration of immunoglobulin is typi-
cally only performed during the first 4 months after trans-
plantation and antiviral antibody half-life is estimated to be 
approximately 25 days,134 it is not surprising that the protec-
tive effects of passive immunotherapy were only maintained 
through the first year. Nevertheless, the inadvertent discovery 
of the protective role of antibodies in preventing EBV-induced 
non-Hodgkin lymphoma represents a potential breakthrough 
in clinical management of this vulnerable patient population.

Despite decades of research aimed at finding a vaccine or 
a cure for HIV infection, this virus remains a scourge of global 
proportions. Early attempts at passive immunotherapy using 
first-generation HIV-specific monoclonal antibodies were not 
highly effective135–137 and this approach was not further 
pursued until a new generation of highly potent and broadly 
neutralizing antibodies were identified.138,139 In particular, a 
recent Phase I clinical trial140 involving a single administration 
of a broadly neutralizing antibody, 3BNC117, has renewed 
interest in the study of passive immunotherapy for HIV pre-
vention and therapeutic intervention. 3BNC117 is an anti-
CD4 binding site antibody that neutralizes 195 of 237 HIV 
strains comprising six different clades and was tested in a dose-
escalation study among HIV-positive patients with different 
levels of viremia. At a dose of 10 or 30 mg/kg, patient viral 
load was reduced by up to 2.5 log10 (average decline: 1.48 
log10) in 10 of 11 individuals. The subject that did not respond 
to antibody treatment at 10 mg/kg was infected with a resis-
tant strain of HIV. Although the effect of antibody therapy on 
viremia was mainly transient after a single administration, the 
viral load remained lower than their preexisting set point in 3 
of 10 patients at 56 days and one subject exhibited viremia 
levels that remained near the limits of detection throughout 
the 56-day study. It is currently unclear if HIV viremia in these 
patients will eventually rebound to their original levels. 
Similar results were observed during antibody-based therapy 
of SHIV-infected rhesus macaques in which most animals 
showed a rebound in viral replication after the transferred 
monoclonal antibodies declined to undetectable levels but a 
subset of animals maintained virological control in the 
absence of further infusions.141 Combinations of antiretroviral 
drugs are currently the standard of care for treatment of HIV 
infection and it is unlikely that one dose of a single monoclo-
nal antibody will be sufficient to have a long-term clinical 
benefit among a broad patient base. However, there is growing 
optimism that combining a cocktail of potent, broadly neu-
tralizing monoclonal antibodies with antiretroviral drugs and/
or agents that activate latent virus reservoirs could theoreti-
cally provide long-term reduction in viral load and reduce the 
rates of transmission.

FUTURE OF PASSIVE IMMUNIZATION
With substantial advances in monoclonal antibody technolo-
gies and an increasing appreciation for the role of antibodies 
in the control of infectious disease, the development of sophis-
ticated new passive immunotherapies is likely to continue at 
an accelerated pace. Antibiotic resistance among clinically  
relevant bacteria including multidrug-resistant (MDR) and 
XDR M. tuberculosis, methicillin-resistant Staphylococcus aureus 
(MRSA), and dominant strains of antibiotic-resistant Salmo-
nella typhi and other gram-negative bacterial species is a 
growing concern.122,125,142–144 This, coupled with the knowledge 
that fewer new antibiotics are moving through the drug pipe-
line,122,123 may further motivate research into the development 
of antibody-based therapies to overcome these challenges to 
clinical intervention against microbial disease. One drawback 
to passive immunization is that antibody half-life in vivo 

of the most common human diseases and it is estimated to 
infect up to one-third of the world’s population.124 The devel-
opment of strains of extensively drug-resistant (XDR) tubercu-
losis (TB),125 some of which are resistant to all current 
antibiotic therapies,126,127 is also a growing concern, especially 
as there are few antibiotic drugs in the pipeline.122,123 There is 
considerable debate over the role of antibodies in controlling 
TB, with many believing that antibody plays little or no role 
in protective immunity (reviewed in references 124 and 128). 
In a comprehensive historical review by Glatman-Freedman 
and Casadevall,128 the clinical benefit of antibody-mediated 
immunotherapy, albeit quite variable, provides evidence to 
suggest that antibody plays a role in protection against TB. In 
studies reported by Paquin in 1895, a group of patients with 
pulmonary TB confirmed by the presence of bacterium in 
their sputum showed clinical benefit. After 2 months of 
passive immunotherapy, 82% of patients showed reduced 
cough, reduction in bacterial load in sputum, clearance of 
pulmonary infiltrates, reduction in hemoptysis, improved 
appetite, and weight gain.128,129 At 6 months after initiating 
treatment, all the treated patients were alive and more than 
half were discharged from the hospital. In contrast, more than 
30 untreated TB patients from another ward in the hospital 
had died within 4 months of starting the study. Experimental 
proof of antibody-mediated protection against TB was also 
published in 1897 by Fisch.128,130 After lethal TB challenge of 
guinea pigs, administration of immune serum was performed 
on days 4, 7, and 10, with further doses administered every 
other day for 4 weeks and once a week after that. Fisch 
reported that 16 of 18 treated animals were alive after 2.5 
months (89% survival). If treatment was delayed until day 14 
postchallenge, then 2 of 3 (66%) animals survived but showed 
signs of illness. If no antibody treatment was performed, then 
0 of 3 (0%) of the animals survived past day 28. The same 
approach was used to treat 50 patients with pulmonary TB.131 
All of the 19 patients treated at the earliest stages of disease 
improved rapidly after passive immunotherapy and were 
tuberculin negative at the end of the study. Of the 11 patients 
treated at the “incipient” stage of disease, 36% no longer had 
bacilli in their sputum and were considered cured and 64% 
showed substantial improvement in disease symptoms. The 
20 patients with advanced TB showed only modest or no 
improvement after therapy and it was concluded that immune 
serum was only beneficial in early but not advanced cases of 
disease.131

EBV is a common human pathogen that causes a chronic 
infection and is a leading cause of posttransplant non-
Hodgkin lymphoma resulting from the uncontrolled prolif-
eration of EBV-infected B lymphocytes in patients undergoing 
immunosuppressive therapies.132 In a large retrospective study 
involving 44,828 kidney transplant patients, the effect of pro-
phylactic treatment for cytomegalovirus (CMV) on posttrans-
plant incidence of non-Hodgkin lymphomas was examined.133 
The standardized incidence ratio (SIR) for non-Hodgkin lym-
phoma was expressed as the number of lymphoma cases per 
100,000 persons and calculated after normalizing for age, sex, 
and geographical origin. The 30,255 patients who did not 
receive CMV prophylaxis had a SIR = 26.4, which remained 
unchanged (SIR = 24.2, P = .62) among the 12,470 patients 
who received antiviral drugs (acyclovir or ganciclovir). In strik-
ing contrast, the 2103 patients who received anti-CMV immu-
notherapy showed a complete absence of lymphomas during 
the first year after transplantation (SIR = 0, P = .016 vs. antiviral 
treatment). The most common anti-CMV immunoglobulin 
products were shown to contain antibodies against EBV and 
it is believed that this is the mechanism of action for the pro-
tection afforded during the first year posttransplantation.133 In 
the subsequent 5 years of follow-up, new cases of lymphoma 
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sufficient for protection or therapeutic intervention of acute 
or remittent disease, active immunization through improved 
vaccine design may still be needed to train the host immune 
system to maintain long-term levels of protective immunity. 
Importantly, examples of successful passive immunization 
approaches may provide a useful framework for developing 
new and improved vaccines that elicit the most protective 
antibody responses.

 References for this chapter are available at ExpertConsult.com.

often provides only transient protection unless repeated 
administrations are performed. This may change as new tech-
nologies that increase the half-life of monoclonal antibodies 
are employed. For example, the Fc region of an anti-RSV 
monoclonal antibody, motavizumab, was mutated to increase 
its binding to the neonatal Fc receptor (FcRn), resulting in 
serum antibody pharmacokinetics in human subjects that 
increased from a typical 19- to 34-day half-life to up to a 
100-day half-life while still retaining virus-specific neutralizing 
activity.144a Nevertheless, while passive immunization may be 

http://www.ExpertConsult.com
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